Advanced

table of contents


solve
dSolve
taylor
laplace, invLaplace
fourier, invFourier
FFT, IFFT

solve ClassPad Math Plus

Returns the solution of an equation or inequality.
Syntax 1: solve(Exp/Eq/Ineq [, Variable] [ ) ]

  • “\(x\)” is the default when you omit “[, Variable]”.

スティッキー
スティッキー

Syntax 2: solve(Exp/Eq/Ineq\(≠\), Variable[, value, lower limit, upper limit] [ ) ]

  • This command is valid only for equations and \(≠\) expressions when “value” and the items following it are included. In that case, this command returns an approximate value.
  • A true value is returned when you omit “value” and the items following it. However, when a true value cannot be obtained, an approximate value is returned for equations only based on the assumption that value = 0, lower limit = – ∞, and upper limit = ∞.

スティッキー
スティッキー

Syntax 3: solve({Exp-1/Eq-1, …, Exp-N/Eq-N}, {Variable-1, …, Variable-N} [ ) ]

  • When “Exp” is the first argument, the equation Exp = 0 is presumed.

スティッキー

Syntax 4:
Entering a vector equation in the solve( command allows the relationship between 2 objects (points, lines, planes or spheres) to be resolved. Here, 4 typical examples of syntax are shown for solving a vector equation using the solve( command.

The syntax below shows a column vector with 3 (or 2) elements between Vct-1 and Vct-6), with s, t, u and v as the parameters.
solve(Vct-1 + s * Vct-2 [= Vct-3, {variable-1}])

  • If the right side of the equation (= Vct-3) is omitted in the above syntax, it is assumed that all of the elements on the right side are 0 vectors.
    solve(Vct-1 + s * Vct-2 = Vct-3 + t * Vct-4, {variable-1, variable-2})
    solve(Vct-1 + s * Vct-2 + t * Vct-3 = Vct-4 – u * Vct-5, {variable-1, variable-2, variable-3})
    solve(Vct-1 + s* Vct-2 + t * Vct-3 = Vct-4 – u * Vct-5 + v * Vct-6, {variable-1, variable-2, variable-3, variable-4})
  • Variables (variable 1 through variable 4) can be input into the elements of each vector (Vct-1 through Vct-6) in the above four syntaxes to solve for those variables.
    スティッキー

dSolve ClassPad Math Plus

Solves first, second or third order ordinary differential equations, or a system of first order differential equations.
Syntax: dSolve(Eq, independent variable, dependent variable [, initial condition-1, initial condition-2][, initial condition-3, initial condition-4][, initial condition-5, initial condition-6] [ ) ]
dSolve({Eq-1, Eq-2}, independent variable, {dependent variable-1, dependent variable-2} [, initial condition-1, initial condition-2, initial condition-3, initial condition-4] [ ) ]

  • If you omit the initial conditions, the solution will include arbitrary constants.
  • Input all initial conditions equations using the syntax Var = Exp. Any initial condition that uses any other syntax will be ignored.

スティッキー
スティッキー

taylor ClassPad Math Plus

Finds a Taylor polynomial for an expression with respect to a specific variable.
Syntax: taylor (Exp/List, Variable, order [, center point] [ ) ]

  • Zero is the default when you omit “[, center point]”.

スティッキー
スティッキー

laplace, invLaplace ClassPad Math Plus

“laplace” is the command for the Laplace transform, and “invLaplace” is the command for the inverse of Laplace transform.
Syntax: laplace \(\mathcal{L}_t (f(t))[s]\)
  \(f(t)\): expression
  \(t\): Variable with respect to which the expression is transformed
  \(s\): parameter of the transform
   invLaplace \(\mathcal{L}_s^{-1} (L(s))[t]\)
  \(L(s)\): expression
  \(s\): Variable with respect to which the expression is transformed
  \(t\): parameter of the transform

スティッキー
スティッキー
スティッキー
スティッキー

fourier, invFourier ClassPad Math Plus

“fourier” is the command for the Fourier transform, and “invFourier” is the command for the inverse Fourier transform.
Syntax: fourier \(~ Ϝ_x (f(x))[w]\)
  invFourier \(~ Ϝ_w^{-1} (f(w))[x]\)
  \(x\): Variable with respect to which the expression is transformed
  \(w\): parameter of the transform

スティッキー
スティッキー
スティッキー
スティッキー

FFT, IFFT ClassPad Math Plus

“FFT” is the command for the fast Fourier transform, and “IFFT” is the command for the inverse fast Fourier transform.
The \(2^n\) data value is required to run FFT and IFT. FFT and IFFT are calculated numerically.
Syntax: FFT(list) or FFT(list, m)
  IFFT(list) or IFFT(list, m)

  • Data size must be \(2^n\) for n = 1, 2, 3, …
  • The value for m is optional. It can be from 0 to 2, indicating the FFT parameter to use: 0 (Signal Processing), 1 (Pure Math), 2 (Data Analysis).

スティッキー
スティッキー
スティッキー
スティッキー
スティッキー
スティッキー